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Abstract

The Harrier YAV-8B aircraft is capable of vertical and short-field take-off and landing (V/STOL) by directing its four exhaust

nozzles toward the ground, or conventional flight by rotating its nozzles into a horizontal position. The British Royal Air Force
and the United States Marine Corps have used this aircraft for more than 30 years to provide a quick reaction time for troop

support, and reduce the need for long runways. The success of this powered-lift (PL) vehicle has also prompted the more recent
design of the Joint Strike Fighter (JSF). However there are significant safety issues that must be addressed when operating a PL
vehicle in close proximity to the ground. Hot Gas Ingestion (HGI) by the inlets can result in a rapid loss of powered lift; and

high-speed jet flows along the ground plane can induce low pressures underneath the vehicle, causing a "suck-down" effect.
Under these conditions, departure from controlled flight may occur. Moreover, unsteady ground vortices and jet fountains can

affect the aircraft's controllability and its proximity to ground troops.

The viscous, time-dependent flow fields of PL vehicles are difficult to accurately and efficiently predict using Computational

Fluid Dynamics (CFD). A number of researchers have used the time-dependent Reynolds-averaged Navier-Stokes (RANS)

equations to compute flows for single and multiple jets in a cross-flow. A few have added some geometric complexity to the
problem by computing flows for jet-augmented delta wings near a ground plane. Smith et.al. 1computed for the first time a

single RANS solution about a simplified Harrier. This geometry included a fuselage, wing, leading edge root extension (LERX),
inlets, and exhaust nozzles. All of these investigations cite two practical problems with computing these flows: 1) the need for

improved solution accuracy; and, 2) the need for faster solution methods. We view the need for faster solution methods as key to
improving the solution accuracy and making this class of computation more routine. One can hardly refine grids, explore the use
of advanced turbulence models, and generate databases when it takes weeks of dedicated computer time for a single solution.

Chaderjian, Ahmad, Pandya, and Murman 24 have focused on reducing the time-to-solution for this very difficult and complex

problem through process automation and exploitation of parallel computing. They began with the Harrier geometry reported in
Ref. 1, and added a deflected wing flap and empennage for greater realism. To date more than 80 solutions have been carried

out. This paper will describe this process and progress made in reducing the time required to generate a simple longitudinal
force and moment database for a Harrier in ground effect. Figure 1 shows a typical snap-shot from an unsteady streakline

animation, where fluid particles are colored by temperature. The ground vortex and a jet-fountain vortex are highlighted in the

figure. Figure 2 shows a similar streakline image, where HGI occurs due to the vehicle's close proximity to the ground. Figure

3 shows the mean lift coefficient as a function of angle of attack and height. The angle of attack range was 4 ° < ot < 10 ° with

an increment of 1 degree, and the height range was 10ft < h < 30ft with an increment of 5 feet. This 35 solution database was
extended to over 2500 cases using a monotone cubic-spline interpolation procedure. The suck-down effect (reduction of lift near

the ground) is highlighted in the figure. The "cushion effect," the conventional reduction of lift as the vehicle moves out of

ground effect, is also indicated. All 35 RANS solutions were obtained using 952 Silicon Graphics Origin 2000 and 3000
processors in dedicated mode for one week. Typically, 112 processors were assigned to each case. Some other cases used fewer

processors to utilize all available CPUS. Figure 4 shows the improvement in time-to-solution (about 2.75 days) for a "worst
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case"over a period of 17 months. The long compute times are due to the fundamental frequency often being as low as 1/2 Hertz.
Several periods (about 10-12 seconds of flight time) were computed to obtain meaningful mean flow quantities.

The final paper will report on the automation of the solution process, including: grid generation, job monitoring, solution
completion criteria, and post processing. Moreover, improvements in parallel efficiency for a dual time-step algorithm for the

RANS equations will also be presented. Results will be discussed in detail using unsteady streakline flow visualization to

correlate unsteady flow structures with dominant aerodynamic frequencies. The stability derivatives, CLc_ and CLh, will also be
presented.
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Fig. 1 Time-dependent streaklines colored by
temperature, where red is hot and blue is cool.
M=0.05 (33 kts), h=30ft, cc=9°.

Fig. 2 Time-dependent streaklines colored by
temperature, where red is hot and blue is cool.
M=0.05 (33 kts), h=10ft, _=9 °.
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ground effect, is also indicated. All 35 RANS solutions were obtained using 952 Silicon Graphics Origin 2000 and 3000
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case"overaperiodof17months.Thelongcomputetimesareduetothefundamentalfrequencyoftenbeingaslowasi/2Hertz.
Severalperiods(about10-12secondsofflighttime)werecomputedtoobtainmeaningfulmeanflowquantities.
Thefinalpaperwill reportontheautomationofthesolutionprocess,including:gridgeneration,jobmonitoring,solution
completioncriteria,andpostprocessing.Moreover,improvementsinparallelefficiencyforadualtime-stepalgorithmforthe
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correlateunsteadyflowstructureswithdominantaerodynamicfrequencies.The stability derivatives, CL a and CLh, will also be
presented.

References

_Smith, M. H., Chawla, K., and Van Dalsem, W. R., "Numerical Simulation of a Complete STOVL Aircraft in Ground
Effect," AIAA 91-3293-CP, September 1991.

2Murman, S. M., Chaderjian, N. M., Pandya, S.A., "Automation of a Navier-Stokes S&C Database Generation for the

Harrier in Ground Effect," AIAA Paper 2002-0259, January 2002.

3Chaderjian, N.M., Pandya, S.A., Ahmad, J.U., and Murman, S.M., "Parametric Time-Dependent Navier-Stokes

Compuations for a YAV-8B Harrier in Ground Effect," AIAA 2002-0950, January 2002.

4Pandya, S.A., Chaderjian, N.M., and Ahmad, J.U., "Parametric Study of a YAV-8B Harrier in Ground Effect Using Time-
Dependent Navier-Stokes Computations," AIAA 2002-1676, June 2002.

Ground Vortex

\

Fountain Vortex

Fig. 1 Time-dependent streaklines colored by
temperature, where red is hot and blue is cool.
M=0.05 (33 kts), h=30ft, c_=9°.

Fig. 2 Time-dependent streaklines colored by
temperature, where red is hot and blue is cool.

M=0.05 (33 kts), h=10ft, c_=9°.
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